Bonjour. Quelqu’un pourrait m’aider avec la question 3 « résoudre l’équation f(x)=0 » svp. Merci d’avance.
Question
2 Réponse
-
1. Réponse jpmorin3
f(x) = (x - 1)(2x - 5)
f(x) = 0 <=> (x - 1)(2x - 5) = 0
cette équation s'appelle une équation produit.
Pour la résoudre on utilise la propriété
Un produit de facteurs est nul si et seulement si l'un des facteurs est nul
(x - 1)(2x - 5) = 0 si et seulement si
x - 1 = 0 ou si 2x - 5 = 0
si x = 1 ou si x = 5/2
elle admet deux solutions qui sont 1 et 5/2 S = {1 ; 5/2}
-
2. Réponse MrDuck
EXPLICATION
[tex]f(x) = (x - 1)(2x - 5)[/tex]
Pour résoudre l'équation f(x)=0 on procède de la manière suivante par l'appellation de la règle
Si
[tex]a \times b = 0[/tex]
C'est soit a=0 ou b=0
Par analogie,
a=(x-1) et b=(2x-5)
Donc pour résoudre f(x) =0
C'est soit
x-1=0 ou 2x-5=0
En tirant x
x=1 ou 2x=5
x=5/2
L'ensemble des solutions
S={1;5/2}
SOLUTION
Résolvons l'équation
[tex]f(x) = 0[/tex]
Avec
[tex]f(x) = (x - 1)(2x - 5)[/tex]
Soit
[tex](x - 1) = 0 \: ou \: (2x - 5) = 0 \\ [/tex]
En tirant x
[tex]x = 1 \: ou \: 2x = 5 \\ x = 1 \: ou \: x = \frac{5}{2} [/tex]
L'ensemble des solutions
S={1;5/2}