Bonjour, je dois faire cet exercice (le 92) et je n’y arrive pas. C’est le chapitre des dérivations.
Mathématiques
faustinegonzalp48w3b
Question
Bonjour, je dois faire cet exercice (le 92) et je n’y arrive pas. C’est le chapitre des dérivations.
1 Réponse
-
1. Réponse Anonyme
1. D’après le graphique, [tex]f[/tex] semble décroissante sur [tex]\left[-4;0\right][/tex] et croissante sur [tex]\left[0;4\right][/tex].
2. On a pour tout [tex]x[/tex] de [tex]\left[-4;4\right][/tex], [tex]f'(x)=\dfrac 1{20}\left(x+\dfrac{x^3}6\right)=\dfrac x{120}\left(x^2+6\right)[/tex].
Comme le carré d’un nombre réel est toujours positif, on a [tex]x^2+6\geqslant 6>0[/tex] et [tex]f'(x)[/tex] est donc du signe de [tex]x[/tex], donc négatif sur [tex]\left[-4;0\right][/tex], intervalle sur lequel [tex]f[/tex] est donc décroissante et positif sur [tex]\left[0;4\right][/tex], intervalle sur lequel [tex]f[/tex] est donc croissante.
Le minimum de [tex]f[/tex] est donc atteint en [tex]0[/tex], et c’est [tex]f(0)=\dfrac 1{20}+1=1,05[/tex].
La hauteur minimale du câble est donc de [tex]1,05\ m[/tex].